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Analysis and Applications of a General Boresight Algorithm
for the DSS-13 Beam Waveguide Antenna
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A general antenna beam boresight algorithm is presented. Equations for axial

pointing error, peak received signal level, and antenna half-power beamwidth are

given. A pointing error variance equation is derived that illustrates the dependence

of the measurement estimation performance on the various algorithm inputs, in-

eluding RF signal level uncertainty. Plots showing pointing error uncertainty as a

function of algorithm inputs are presented. Insight gained from the performance

analysis is discussed in terms of its application to the areas of antenna controller

and receiver interfacing, pointing error compensation, and antenna calibrations.

Current and planned applications of the boresight algorithm, including its role in

the upcoming Ka-band downlink experiment (KABLE), are highlighted.

I. Introduction

Antenna beam boresigthing algorithms were developed

in 1990 for gain and pointing calibrations carried out dur-

ing the DSS-13 beam waveguide (BWG) Antenna Phase

1 Project 1. The three- and five-point algorithms are cur-

rently implemented on a personal computer (PC) that in-

terfaces with both the antenna radiometer systems and the

antenna mechanical system to close an RF loop around the

pointing system. At the present time, these algorithms are

being moved to the antenna mechanical system as part of

a planned DSS-13 controller upgrade that is to he a pro-

totype for future DSN antenna controllers (e.g., the new

DSS-24 BWG antenna). The boresighting program will
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obtain the input signal level from receivers over the station

local area network (LAN). Specifically, system noise tem-

perature estimates will be received from the total power

radiometer subsystem and coherent SNR estimates will be

obtained from the TP-13 and Advanced Receiver II (ARX)

subsytem.

This article will present the general boresight algo-

rithm. As part of the new implementation, an equation

describing the propagation of signal level input measure-

ment uncertainty into axial pointing errors was derived

and is presented here. The signal level uncertainty can

be the sum of numerous ground antenna sources as noise

and/or errors from the antenna front-end electronics and

measurement devices, antenna servo errors, as well as inci-

dent (coherent) signal dynamics due to spacecraft attitude

controls and varying downlink modulation indices. It will

be shown that the pointing error variance equation, also to

be coded in the DSS-13 upgrade, allows prediction of bore-
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sighting performance based on the (assumed random and
independent) RF SNR measurements and also on other

system parameters (e.g., antenna half-power beamwidth,

pointing error magnitudes, etc.). Plots that illustrate the

dependence of the algorithm performance on the numer-

ous input variables will be given. Insight gained from the
performance analysis will be discussed in terms of antenna

controller and receiver interfaces, pointing error compensa-

tion, and pointing calibrations. The article will also high-

light some of the current and planned applications of the

algorithm, including its utilization in the upcoming Ka-

band downlink experiment (KABLE).

II. Boresight Algorithm

Three- and five-point boresight algorithms applicable to

tracking extragalactic radio sources were developed and
programmed in 1990 by R. Riggs. The algorithms map

measured on- and off-source noise temperature measure-

ments into estimates of axial (cross-elevation and eleva-

tion) pointing error, peak temperature, and antenna half-

power beamwidth (full-width). The algorithms continue to
be successfully applied at DSS 13 to boresight the BWG

antenna, that is, maintain the peak of the antenna beam

aligned with the target during gain and pointing calibra-
tion sessions. Details of the current PC-based implemen-

tation and usage can be found in Footnote 1 and [1,2].

The general algorithm will be presented below in such a

manner as to not be dependent on any specific receiver for
signal level input.

This particular boresighting scheme is actually a step

scan that measures signal level at small angles off-boresight
along a single axis at a time. A five- (or three-) point bore-

sight implies that five (or three) measurements on-source
along an axis are input into the algorithm. In the case of

noncoherent signal inputs, the on-source measurements are

obtained by using two off-source measurements to negate
contribution of the baseline cold-sky system noise. The

data points are then fit to a linearized exponential to yield

desired pointing and peak received power estimates. Five-

and three-point step scans will be implemented in the DSS-

13 antenna pointing system, but in general any finite num-

ber (greater than two) of signal level measurements can
comprise the input. The default offsets where measure-

ments are taken are points that correspond to the 3-dB,

1-dB, and 0-dB points on both sides of the beam relative to

the assumed true direction of the target. The three-point

version has default offsets corresponding to measurements

at the 1-dB (both sides) and peak-signal levels. Arbitrary
offsets can be used but their magnitudes are bound by the

validity of the Gaussian model used to approximate the

antenna beam pattern.

Let the signal level inputs (in linear units) be Yi, i =

1,...,n, sensed at the angular offsets xi,i = l,...,n su-

perimposed on the predicted target angles, then the re-

ceived signal level model is

yi(xi) = ypeak exp ( 41n(2) , __)2) (1)

where Ypeak is the peak signal level at boresight, H is the

antenna (full-width) half-power bearnwidth, and e is the
pointing error. These three variables are calculated by the

algorithm. The solution involves solving for the coefficients

cl, c2, and c3 of the best-fit parabola satisfying the set of

n equations

In (yi(xi)) "- c1 31" c2xi -_- c3 x2 (2)

or

= exp(c, + c2 , + (3)

By differentiating Eq. (3) with respect to x and equating
to zero, the offset corresponding to peak signal level, that

is, the pointing error g, is determined to be

C2

(4)

Now, since Ypea_ is defined to be y(e) by Eq. (3), the peak
signal level is found to be

Ypeak = exp Cl -- 4c3 ] (5)

Finally, by equating Eqs. (1) and (3), and setting the an-
gular offset x arbitrarily to zero, the solution equation for

the half-power beamwdith can be solved to be

H= t 41n(2)c3 (6)

In general, the coefficients ci, c2 and ca are calculated via
the method of least squares from the set of n equations

defined by Eq. (2). However, in the case where n = 3, the
three coefficients can be solved for directly from the set of

three equations obtained from Eq. (2).
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III. Variance Propagation

The computed values of e, Weak, and H will have uncer-

tainties o-e, o'vp,,k, and an due to the measurement errors
in the signal level inputs Yi, and perhaps due to significant

antenna position errors in the offsets xi. An equation de-
scribing the propagation of the uncertainties in the signal

level inputs into axial pointing errors, assuming negligible

position offset errors, will be presented below. If needed
in the future, similar variance equations can be derived for

the efficiency variables Yp,ak and H.

The measurement function in Eq. (2) is In (Yi). Let

Yl,i = In (yi), and let the uncertainty in the signal level

inputs y_ be o._i, then the measurement uncertainty in _ni
is

(7)
O'yln i ---- __

Yi

and will be propagated through the boresight algorithm.

The o-N,'s are also presumed to encompass all uncertainty
that was introduced in negating cold-sky background noise

from the y,. For example, in the classic two-point method

of removing the background sky noise contribution in order

to isolate the target signal levels, the resultant variance on

y, is increased as described in Appendix B.

Now, assuming negligible uncertainty in the xi and that

the o-_tn, are random and independent, then the variance
of the computed pointing error ¢ is

0., = =--o-yl., (8)
i=1 \ (TYlni /

From the pointing error solution Eq. (4), the following

partial derivative equation is obtained:

0¢ 1 [ 0c3 c9c2 "_ (9)

which can be inserted into Eq. (8) to yield

(_cz2) 2/_1 c9c3 0c2 ,20-2C3 0---_1_. ) ylni
o. t _ (10)

where cl, c2 and ca are the best fit coefficients from Eq. (2).

From Eq. (6), c3 can be written in terms of the half-power
beamwidth H as

4In (2) (11)
c3- H2

and then substituting ca into the pointing error Eq. (4)

yields

41n (2) (12)
c2=(2¢) H2

Both of the above two equations along with the noise to

signal Eq. (7) can now be inserted into Eq. (10) to write the

pointing error variance in terms of the boresight algorithm

input variables. Inserting and simplifying yield

<re_= ( H2 \2n l'" Oc38_(2))__ \|Z¢_---_t_'Ylni -t- cOyln ,(9c2_2 (0"yi_ 2]\-_/-// (13)

Further expansion of the partial derivatives of c2 and c3 is

given in Appendix A. As seen from Eq. (13) the accuracy

of E depends, in general, on a number of factors: the noise-

to-signal ratio (NSR) of the target, the antenna half-power
beamwidth H, and the magnitude of the actual pointing

error ¢ being estimated. As illustrated in Appendix A, the

magnitude of the axial offsets x, also impacts o-t through
the partial derivative equations of c2 and c3. Performance

in terms of these parameters will be illustrated in the fol-

lowing section.

Two subtle effects that can also degrade estimation ac-

curacy of v are large, simultaneous pointing errors in each
axis and inordinate signal integration time. Large errors

in the axis perpendicular to the one where c is being com-

puted will increase o-t through a decrease in signal level

y_ (which increases the NSR) in Eq. (13). This may or

may not be a major concern, depending on the particular
application of the boresight algorithm and the quality of

the pointing calibration of the antenna. For example, gain

and pointing calibration applications minimize this effect
by continuously measuring and correcting ¢ sequentially
in each axis.

Long signal integration times combined with the sig-
nificant antenna servo move delays may result in axial

step scan measurement periods on the order of minutes
or longer. The sidereal motion of the antenna can then

result in a smearing-type degradation on ¢. This is es-

pecially true if the antenna is in a poor calibration state

where pointing errors can quickly build up as a function
of antenna orientation.

Careful interpretation should be applied to computed

values of o-E during practical DSN tracking operations.
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Specifically, the pointing error variance equation was de-

rived assuming that the input noise to signal measure-

ments crui/yi are independent and random. This assump-
tion does not hold, for example, when the received signal

error sources include drifts and/or biases induced by in-

cident signal dynamics from spacecraft attitude controls
and varying downlink modulation indices.

IV. Performance Analysis and Applications

A. Performance

Performance of the boresight algorithm can be ex-

pressed in terms of the output pointing error standard
deviation _ with respect to the various inputs. In the fol-

lowing, the performance of the algorithm will be quantified
with respect to a 34-m antenna at both X-band (8.45 GHz)

and Ka-band (32 GHz) frequencies (i.e., the half-power

beamwidths are 65 and 17 mdeg, respectively). An impor-

tant statistic is the target NSR, or standard deviation _tn i

defined by Eq. (7). Figure 1 shows a plot ofae versus a_tni
for both three- and five-point boresight algorithms. The

uncertainties were calculated with offsets corresponding to

a zero pointing error. The signal losses corresponding to

both five-point and three-point algorithms are the same

for X- and Ka-bands, and are shown in Fig. 2 for the zero
pointing error case. As seen, irrespective of frequency, the

five-point algorithm is less sensitive to input noise.

Estimation uncertainty in a single axis also increases

with the magnitude of the pointing error ¢. Figures 3 and

4 illustrate this effect for the five-point algorithm at the
Ka- and X-band frequencies, respectively. As seen, _re in-

creases dramatically with _ at Ka-band, while with the

same error magnitudes at X-band it is essentially insensi-
tive. The antenna beam-pointing error vector is defined as
the rss of the simultaneous errors sensed in the elevation

and cross-elevation axes. Thus, the true performance of

the algorithm is two-dimensional. Figure 5 shows how
varies while estimating zero error with an increasing point-

ing error in the opposite axis. Here ay/y is chosen to
be 0.03 for all five signal inputs. This is a typical NSR

observed during low wind (less than 16.7 km/hr) radio
source measurement periods at DSS 13. As seen, the Ka-

band two-axes performance can be significantly degraded

if large errors are present in the perpendicular axis. The
X-band performance is basically insensitive to the cross-

axis error due to the larger beamwidth. Figure 6 shows

the cross-offset Ka-band effect on the five-point algorithm

as a function of NSR for the zero pointing error case and

Fig. 7 summarizes its two-axes Ka-band performance with

equally increasing axial and cross-axis errors.

B. Antenna Controller and Receiver Interfaces

The antenna pointing system controller interfaces with

radiometers and receivers. With respect to the implemen-

tation of the boresight algorithm, signal level integration

times can be specified based on required pointing estimate

accuracy, as shown in the plots of a_ against input noise

to signal levels. The design can be based on worst-case
expected receiver SNR, or the signal levels can be inte-

grated (at the receiver or the antenna controller) with an
adaptive integration time until a specified input ayz, is

achieved. Estimates of the signal level variances need to
be processed simultaneously with the magnitude estimates

for input into the boresight algorithm. The equations that

process the measurement variance estimates from the DSS-

13 total power radiometer and TP-13 and ARX II receiver

subsystems are presented in Appendix B.

C. Pointing Error Compensation

The boresight algorithm is typically used solely for an-

tenna calibration and alignment tasks. However, it will

be utilized as a beam-pointing error compensation mech-
anism for the upcoming KABLE at DSS 13. The plan is

to blind point the antenna at the Mars Observer Space-

craft and use three- or five-point boresights to periodically

peak the received signal by negating any residual point-

ing error buildup. The goal is to have the antenna in the

best possible pointing calibration state so as to maximize
time between boresights and thus avoid the received sig-

nal losses associated with the off-peak axial measurements

taken at the offsets xi. The pointing error variances will
allow real-time assessment of the computed axial correc-

tions before their application.

During KABLE, the spacecraft will provide a simulta-
neous X-/Ka-band downlink. If the antenna X- and Ka-

band beams are coaligned, it is possible to utilize either of

the two signals for the pointing error compensation. With
respect to the input NSR, Fig. 1 indicates that the X-band

signal needs to be considerably stronger than the Ka-band

in order to achieve the same pointing estimation perfor-

mance. This is especially true with the expectation that
DSS 13 will be in a highly calibrated state for KABLE,

since Fig. 7 illustrates that the Ka-band performance is

still superior when estimating small pointing errors.

D. Pointing Calibrations

The formal computation of a pointing error variance

during pointing measurements is novel in the DSN. In ad-

dition to adding a real-time performance assessment capa-

bility during calibration tracks, the pointing uncertainties
can be used as a measurement quality index in off-line
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analysis and pointing error modeling. It is anticipated
that a more accurate antenna pointing calibration can be

obtained from a now-possible weighted least-squares esti-

mate of the pointing model coefficients.

Figures 3 through 7 also give some pointing calibra-
tion insight for Ka-band applications. When possible, it
is best to first calibrate the antenna (or a particular focal

point) at a lower frequency (e.g., X-band) to take out the
large pointing errors. As illustrated, the larger X-band
34-m antenna beamwidth yields an increased insensitiv-

ity of the boresight uncertainty with respect to pointing

error magnitudes. Figure 7 suggests, without considering
the actual SNR conditions, that calibrating with the 34-m

Ka-band signal should commence when the pointing er-

rors are brought down to the 5.0- to 6.0-mdeg level. For

comparison, Figs. 8 and 9 show the boresight estimation
performance of the 34- and 70-m antennas with a 0.0- and

5.0-mdeg error in both the measurement axis and cross-

axis, respectively.

V. Summary

A general antenna beam boresight algorithm has been

presented. Although three- and five-point algorithms were
analyzed for the current DSS-13 antenna controller up-

grade, the equations derived for pointing error, peak re-

ceived signal and antenna half-power beamwidth are gen-

eral. A variance equation, which maps signal level mea-
surement uncertainty into axial pointing errors, was de-

rived. It is also being implemented in the DSS-13 upgrade.

This is the first time that pointing error measurement un-

certainties will be formally computed in a DSN or DSN

research antenna. Plots were presented that illustrate the

dependence of the pointing error estimation performance

on the numerous input variables. In general, for the 34-m

antenna, the algorithm with Ka-band input will outper-
form the X-band input case with respect to input SNR,

assuming that the errors being estimated, as well as cross-

axis errors, are at or below 5.0 mdeg. The Ka-band per-
formance is dramatically degraded as these pointing errors

increase.

Current and planned applications of the boresight algo-

rithm and pointing error variance equation were discussed.

Signal level input variance equations specific to the DSS-
13 antenna controller interface with the total power ra-

diometer and TP-13 and ARX II receiver subsystems were

given in Appendix B. The boresight performance analy-

sis presented will aid in future antenna controller/receiver
interface and pointing error compensation designs. The

availability of pointing error measurement uncertainties
will enhance off-line antenna performance analysis and cal-

ibration efforts. The planned application of the algorithm

for pointing error compensation in the upcoming KABLE

was also highlighted.
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Appendix A

Pointing Error Variance Equation

Let the signal level inputs be yi,i = 1,..., n, that are
sensed at the angular offsets zi, i = 1,..., n superimposed

on the predicted target angles, then the received signal
level model can be written in the following exponential

form:

yi(xi) = exp (Cl + C2Xl + ¢3X_) (A-l)

It can be shown that the offset where the signal level is

maximum, i.e., where x = ¢ and e is the beam pointing

error, is

e- - c2 (A-2)
2c3

where ci, i = 1,...,3 are the coefficients of the best fit

parabola satisfying the set of n equations

In (yi (xi)) = Cl + c2xi + caz_ (A-3)

and will be propagated through the boresight algorithm.

The o'ui are also presumed to encompass all uncertainty
that was introduced in negating cold sky background noise

from the Yi. Now, assuming negligible uncertainty in the

xi and that the aym i are random and independent, then
the variance of the computed pointing error ¢ is

2 £f OE _2
i=l

(A-7)

From the pointing error solution Eq. (A-2), the following

partial derivative equation is obtained:

Oe 1 f Oca Oc2 "_
C 2 --= t o,,,,,, (A-8)

which can be inserted into Eq. (A-7) to yield

or in matrix notation

in (Yn)J

which can be written as

[]c,
_(n) _(n)2J _

(A-4)

(1)2_f Oc32= tc2o ,.,O'e _ i= 1

OC 2 ,_ 2
__ _ 2 (A-9)

Analytic expressions for Oc21OYm i and OcalOYm_ are
needed to completely describe the variance Eq. (A-9). The

least squares solution for the vector C satisfies the follow-

ing matrix equation:

Yln = AC (A-5) C_- (AtA)'lAtYln (A-10)

where the measurement vector Yln is n x 1, the measure-
ment distribution matrix A is n x 3, and the parameter

vector C is 3 x 1. The computed value of the pointing error

from Eq. (A-2) will have an uncertainty at due to measure-
ment errors in the signal level inputs Yl, and perhaps due

to significant antenna position errors in the offsets xi.

The measurement function in Eq. (A-3) is In (Yi). Let

Yln, = In (Yi), and the uncertainty in the signal level inputs

Yi be gyi, then the measurement uncertainty in ym i is

where A t is the transpose of A. Let the the matrix product

(AtA) be denoted as D and be expanded [from Eq. (A-

4)] as

d21 d22 d23 = ZZi EX_ E_,_/
dal da2 daa E_ E_ E _J

(A-11)

- (r_i (A-6)
O'y In _ -- --

Yi

where all summations (from here on) are from i = 1 to n.

Let D' be the inverse of the matrix D, or D '- D -1 where
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D': /d_l d_2 d23| (A-12)
Ld_l d52 43J

From Eq. (A-10) it can be shown that the solutions for c2
and c3 are

t I 2

c2=d;1Eym, + d22Exiym, + d_3Ex, ym , (A-13)

and

i t t 2
c3=d'a, Eymi + d32Exiymi + da3Exiymi (A-14)

Finally, from the last two solution equations the needed

partial derivative equations are calculated to be

0c---2--2= d_l + d_2x i + d_3 x2 (A-15)
Oym

and

0c3 , , , 2 (A-16)
-- = d31 q- d32xi + d33xi
Oym,

and can be inserted in Eq. (A-9) to complete the pointing

error variance equation.
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Appendix B

DSS-13 Signal Level Input Variance Propagation Equations

The new DSS-13 antenna mechanical controller, called

the antenna monitor and control computer (AMC), will
interface with both the total power radiometer and TP-13

and ARX II receiver subsystems for noncoherent and co-

herent RF signal input into the boresight algorithm. This
appendix will summarize the signal level variance propaga-

tion equations needed for each of the interfaces. It is noted

that the boresight algorithm input is required to be in lin-

ear units, as opposed to logarithmic units proportional to

power typically used to describe RF power measurments.

I. Noncoherent Signal Input

AMC inputs from the total power radiometer subsys-

tem will be estimates of system noise temperature _ with

their standard deviations aT, measured at the on-source

angular offsets xi, i = 1,... ,n, and the two off-source

measurements Toil1 and Tolp with their standard devia-

tions 0-ToI_ - and 0-ToI_ sensed at the offsets Xoffland Zoff2.
This axial measurement scheme is depicticed in Fig. B-1

for the case of n : 3, i.e., the three-point boresight al-
gorithm. The required input to the boresight algorithm

are the source noise temperature estimates Tsouree i with
variances 0-_,ou_¢_. corresponding to the zi. The classic

• • $ ....

stralght-hne sky background noise approximation is used

to isolate the target signal levels. The following equation

is applied to estimate the off-source background sky tem-

peratures T_kui along the line shown in Fig. B-l:

Tsky i :ai(Tof]2 - To/f1) + Toffl fori : 1 .... ,n (B-l)

where

abs(zi - Zo111) (B-2)
ai = abs(xo]]_ -- zof]l )

Then, the source temperature estimates are obtained

through the subtraction

Tsoureei =T*'-Ts_i (B-3)

The variances 0-2Ti are mapped through these equations to

obtain the source variances 0-_Tsou_cei. Equation (B-I) can
be rewritten as

T, kyi = (1 - ai)T#11 + aiTou2 for i - 1,..., n (B-4)

and then, assuming that all of the temperature variances

are independent and random, the estimated sky variances

from (B-4) are
2 2 2 2 2

-- ai ) 0-To].fl Jr ai aTo]f2O'Tsky i = (1 (B-5)

where ai is defined above. Finally, from Eq. (B-3) the

source signal level variances are obtained as

2 = 0.2 2
O'Tsourcei T i -_ 0-Tsky i (B-6)

and Tso,,,.¢, i and 0-_'so,-._. for i = 1, ..., n are the required
inputs for the boresight a_gorithm and pointing error vari-

ance equation.

II. Coherent Signal Input

AMC inputs from the TP-13 and ARX II receiver sub-

systems will be estimates of SNR's (P¢/No)i and variances

0-(2pe/_vo)i sensed at the on-source angular offsets xi. Es-

timates of noise power (No)i and variances q?No)i will be
derived from simultaneous radiometer subsystem inputs

of system noise temperatures _ and standard deviations

o"7'1 measured at the on-source angular offsets xi. The
noise power estimates over a 1-Hz bandwidth are defined as

(/Vo)i = t_T/, where K is Boltzmann's Constant. Then the

estimated noise power variances are then 2 = K2a2
0-(No)i Ti "

Multiplication negates the noise power from the target sig-

nal power, as follows:

Pc) (/qo)i (B-7)(P0), = ,

Now, assuming that the above equation is the product of
two independent random variables, the signal power vari-
ance can then be shown to be

(r2. =g 2 . (Pc) 2(P_)i (No)i _ i
(7.2 [A)" "_2 0.2 2

+ (pc/No)i _, o)i "3r (Ro)itT(Pc/No)i

(B-S)

and (/Se)i and _ for i : 1,.., n are the required inputs
_r(p_) i

for the boresight algorithm and pointing error variance

equation•
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Fig. 10. Noncoherent signal measurement scheme.
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